首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18671篇
  免费   3555篇
  国内免费   2917篇
化学   9499篇
晶体学   197篇
力学   3359篇
综合类   169篇
数学   1672篇
物理学   10247篇
  2024年   40篇
  2023年   236篇
  2022年   420篇
  2021年   573篇
  2020年   826篇
  2019年   621篇
  2018年   612篇
  2017年   716篇
  2016年   842篇
  2015年   750篇
  2014年   1062篇
  2013年   1547篇
  2012年   1120篇
  2011年   1255篇
  2010年   1055篇
  2009年   1263篇
  2008年   1263篇
  2007年   1330篇
  2006年   1280篇
  2005年   1031篇
  2004年   969篇
  2003年   896篇
  2002年   715篇
  2001年   630篇
  2000年   555篇
  1999年   510篇
  1998年   459篇
  1997年   341篇
  1996年   309篇
  1995年   276篇
  1994年   249篇
  1993年   191篇
  1992年   164篇
  1991年   175篇
  1990年   120篇
  1989年   116篇
  1988年   97篇
  1987年   74篇
  1986年   69篇
  1985年   66篇
  1984年   44篇
  1983年   24篇
  1982年   47篇
  1981年   38篇
  1980年   32篇
  1979年   35篇
  1978年   12篇
  1977年   23篇
  1976年   12篇
  1957年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high-accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero- and infinite-pressure limits; (c) a hindered-rotor model for HOCO that implicitly includes the cis- and trans-conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data at T ≥ 250 K, but the discrepancy at T < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  相似文献   
92.
Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm−2, which is much lower than that required for IrO2//Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.  相似文献   
93.
The conversion of solar energy to thermal, chemical, or electrical energy attracts great attention in chemistry and physics. There has been a considerable effort for the efficient extraction of photons throughout the entire solar spectrum. In this work light energy was efficiently harvested by using a long-lived betaine photogenerated from an acridinium-based electron donor–acceptor dyad. The photothermal energy-conversion efficiency of the dyad is significantly enhanced by simultaneous illumination with blue (420–440 nm) and yellow (>480 nm) light in comparison with the sum of the conversion efficiencies for individual illumination with blue or yellow light. The enhanced photothermal effect is due to the photogenerated betaine, which absorbs longer-wavelength light than the dyad, and thus the dyad–betaine combination is promising for efficient photothermal energy conversion. The mechanisms of betaine generation and energy conversion are discussed on the basis of steady-state and transient spectral measurements.  相似文献   
94.
The structural changes of copper hexacyanoferrate (CuHCF), a Prussian blue analogue, which occur when used as a cathode in an aqueous Zn-ion battery, are investigated using electron microscopy techniques. The evolution of ZnxCu1−xHCF phases possessing wire and cubic morphologies from initial CuHCF nanoparticles are monitored after hundreds of cycles. Irreversible introduction of Zn ions to CuHCF is revealed locally using scanning transmission electron microscopy. A substitution mechanism is proposed to explain the increasing Zn content within the cathode material while simultaneously the Cu content is lowered during Zn-ion battery cycling. The present study demonstrates that the irreversible introduction of Zn ions is responsible for the decreasing Zn ion capacity of the CuHCF cathode in high electrolyte concentration.  相似文献   
95.
The rapid development of electrochemical energy storage systems requires new electrode materials with high performance. As a two-dimensional material, molybdenum disulfide (MoS2) has attracted increasing interest in energy storage applications due to its layered structure, tunable physical and chemical properties, and high capacity. In this review, the atomic structures and properties of different phases of MoS2 are first introduced. Then, typical synthetic methods for MoS2 and MoS2-based composites are presented. Furthermore, the recent progress in the design of diverse MoS2-based micro/nanostructures for rechargeable batteries, including lithium-ion, lithium-sulfur, sodium-ion, potassium-ion, and multivalent-ion batteries, is overviewed. Additionally, the roles of advanced in situ/operando techniques and theoretical calculations in elucidating fundamental insights into the structural and electrochemical processes taking place in these materials during battery operation are illustrated. Finally, a perspective is given on how the properties of MoS2-based electrode materials are further improved and how they can find widespread application in the next-generation electrochemical energy-storage systems.  相似文献   
96.
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.  相似文献   
97.
Covalent organic frameworks (COFs) enable precise integration of various organic building blocks into porous skeletons through topology predesign. Here, we report the first example of COFs by integrating electron withdrawing bromine group onto the skeletons for triboelectric nanogenerators (TENG). The resulting framework exhibits high surface area and good crystallinity. Thus, the bromine functionalized COF has more regular aligned π columns and arrays over the skeleton than bare COFs, which in turn significantly enhances charge transport ability. As a result, bromine functionalized COFs showed higher electrical output performance at 5 Hz with a peak value of short circuit current density of 43.6 μA and output voltage of 416 V, which is 2 and 1.3 times higher than those of bare COFs (21.6 μA and 318 V), respectively. These results demonstrated that this strategy for engineering electron withdrawing groups on the skeleton could open a new aspect of COFs for developing TENG devices.  相似文献   
98.
As promising fresh-water purification devices, solar steam generation systems have attracted significant attention recently. However, in practice, the approach often suffers from a poor solar energy conversion efficiency and a low water production rate due to poor material selection and inefficient microscopic structure design. Here, we fabricate an efficient solar steam generation system by “building” polyoxometalate “nano-walls” on rice paper-derived three-dimensional porous carbon paper. In this solar steam generation system, the height of the vertically aligned CoP4Mo6 “nano-walls” range from 100 to 150 nm with thicknesses about 15 to 25 nm. Under 1 sun irradiation (1 sun = 1 kW m−2), the surface temperature increases from 29 to 50 °C in a short time with a solar thermal conversion efficiency achieving 92.8 %. The stability and durability of this solar steam generation system, which withstands fifteen cycle continuous tests, also offer good prospects. Its attractive solar energy conversion performance originates from the intense sunlight absorption and high conversion ability of the CoP4Mo6 “nano-walls”, as well as extremely promising heat localization and water transportation properties of the three-dimensional porous carbon paper. This solar steam generation system, which has produced some inspiring results, is employed for seawater desalination and for purification of water polluted with organic dyes.  相似文献   
99.
  1. Download : Download high-res image (96KB)
  2. Download : Download full-size image
  相似文献   
100.
《Mendeleev Communications》2020,30(1):121-123
  1. Download : Download high-res image (85KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号